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Abstract: Identifying local muscle fatigue phases through surface electromyography (sEMG) is 
essential for developing real-time, non-invasive monitoring systems. This study compares two modeling 
strategies—classification and regression—for detecting three fatigue phases (non-fatigue, transition, 
fatigue) using sEMG signals alone. Data were collected during sustained handgrip tasks from healthy 
subjects, and eleven EMG features were extracted. Labels were assigned based on observed force 
decline thresholds: upper than 90%, between 70–90% and lower than 70% of Maximum voluntary 
contraction (MVC), serving as ground truth during training. Three classification models:  SVM 
(Support Vector Machine), LDA (Linear Discriminant Analysis), QDA (Quadratic Discriminant 
Analysis) and a Multiple Linear Regression (MLR) model were trained and tested. With classifiers, 
QDA yielded the highest accuracy of 82% and the most consistent phase mapping. However, MLR 
achieved higher performance in reconstructing continuous force output with r = 0.96, enabling 
smoother and more physiologically realistic phase segmentation. Visual comparisons showed that 
classification outputs tended to be fragmented, particularly in the transition phase while regression 
maintained temporal coherence. These results research show that regression provides a more robust and 
interpretable framework for modeling fatigue progression from EMG signals, although classification 
models may still be useful in applications requiring discrete outputs. 

Keywords: Classification, Multivariate linear regression, Predictive modeling, Signal processing, Surface electromyography 
(sEMG). 

 
1. Introduction  

Muscle fatigue, that transient waning of a muscle’s capacity to summon force or power amid 
voluntary striving, emerges not from one isolated cause but from a tangled weave of influences—some 
physiological, others psychological—that shape the neuromuscular system’s output and one’s sense of 
exertion. The task’s demands mold this interplay, where constraints within the body meet perceptions in 
the mind. Such a dual lens, encompassing what is felt and what is performed, affords a fuller grasp of 
fatigue’s presence in real-world endeavours [1]. 

Surface electromyography (sEMG) is a non-invasive method which gives the electrical potentials 
information generated by muscle fibres during voluntary contraction. It has been widely adopted for 
monitoring muscle performance over time since it provides valuable insight into neuromuscular activity. 
As fatigue develops, the sEMG signal reflects corresponding physiological changes, making it a useful 
tool for tracking fatigue progression in both clinical and experimental settings [2]. 

Have reported that during isometric contraction, the EMG signal reflects muscle activation and 
provides an indirect but reliable estimate of neuromuscular activity during maximal voluntary 
contractions, indicating the motor unit recruitment’s level and force production. 

Different sEMG features have been described and used in the domain literature to quantify fatigue-
related changes, each reflecting specific aspects of neuromuscular behavior. In the time domain, simple 
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amplitude-based descriptors for example as mean absolute value (MAV), root mean square (RMS), 
integrated EMG (IEMG)  [3] and variance have demonstrated effectiveness in characterizing muscle 
activation during sustained effort. Waveform length and amplitude range have also been shown to 
capture temporal complexity and variability in the signal, making them suitable indicators of 
neuromuscular efficiency and fatigue progression in time-domain analysis [4, 5]. Additionally, energy-
based operators such as the Teager–Kaiser Energy Operator have been shown to improve sensitivity to 
subtle signal modulations during muscle activation, making them valuable for enhancing fatigue 
detection in the time domain [6].  

In addition to temporal descriptors, time-frequency features have been proven useful for analysing 
the non-stationary behaviour of EMG signals. Techniques as for example the Wigner-Ville distribution 
and the S-transform allow for localized tracking of spectral changes over time, offering insight into how 
frequency components evolve during fatigue [7, 8].  

Complementing these, nonlinear descriptors such as Shannon entropy and Hilbert-Huang-based 
variance provide measures of signal complexity and irregularity, which typically increase as fatigue 
develops [9, 10].  

Together, when used collectively, these multi-domain features offer a more comprehensive 
understanding of the physiological transitions associated with fatigue.  These have been widely used in 
EMG-based modelling frameworks. 

In a reported study, Atzori, et al. [11] proposed a hybrid framework. This framework combines 
regression and classification to ensure simultaneous and scaled force control at the wrist using EMG 
signals. Their method employs a multi-kernel learning classifier to identify movement classes, followed 
by class-specific neural network regressors to estimate the corresponding force outputs. This two-stage 
approach improved the accuracy of force prediction, particularly in complex degrees of freedom such as 
pronation and supination. 

Isa and Aris [12] employed genetic programming (GP) to assess localized muscular fatigue during 
isometric exercises using surface EMG measurements. Their approach distinguished between non-
fatigue, transition-to-fatigue, and fatigue phases by evolving a population of classifiers trained on 
statistical features such as RMS, entropy, kurtosis, and skewness. Of particular note, the model's explicit 
identification of the transition phase underscores the value of interpretable EMG models in monitoring 
fatigue development, and, without requiring force measurements, revealed promising classification 
accuracy across multiple individuals. 

Marri and Swaminathan [13] developed a method for detecting muscle fatigue using features 
extracted from surface EMG signals. Their approach focused on distinguishing between non-fatigue and 
fatigue states during dynamic contractions. Using classifiers such as kNN, logistic regression and Naive 
Bayes, they achieved up to 86% accuracy, reinforcing the viability of machine learning techniques in 
binary fatigue detection based on EMG signals.  

Li, et al. [14] present a comprehensive review of non-invasive muscle fatigue monitoring techniques, 
focusing on surface sEMG, mechanomyography (MMG), and near-infrared spectroscopy (NIRS). The 
survey details acquisition methods, signal processing, and machine learning applications. It highlights 
sEMG as the most reliable and widely adopted technique for real-time fatigue detection in wearable 
systems due to its non-invasiveness and strong physiological relevance. 

In this study, the emphasis falls on surface electromyography (sEMG)—a modality both non-
invasive and capable of continuous, real-time monitoring—not as an afterthought, but as the central 
means through which fatigue-induced variations in muscle behaviour are traced. 

The primary goal is to characterize fatigue phases - non-fatigue, transition from non fatigue to 
fatigue and fatigue- using only sEMG features. However, since sEMG does not inherently include 
absolute force information, simultaneous recording of grip force was used during the training step to 
label fatigue states. These labels were based on relative reductions in maximum voluntary contraction 
(10% and 30%), thresholds that are consistent with physiological transitions observed in sustained 
isometric tasks. 
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A platform was developed to record sEMG signals. After preprocessing and segmentation, eleven 
features were extracted from each EMG segment across time, time-frequency, and nonlinear domains. 
Three classification models mainly (SVM, LDA, QDA) were trained to distinguish the three fatigue 
phases. In parallel, a multiple linear regression model (MLR) was implemented to predict force directly 
from EMG. This dual approach enables a comparative evaluation of classification versus regression in 
mapping EMG-derived neuromuscular activity to fatigue progression. The different steps of the 
proposed study are illustrated through the flowchart given in Figure 1.  
 

 
Figure 1.  
Flow chart of the EMG-Based Fatigue Phase Detection and classification. 

 

2. Materials and Methods 
2.1. Experimental Setup 

To carry out the study, nineteen healthy adults (13 males and 6 females), aged 22 to 38 years, with an 

average weight of 79 ± 8 kg for males and 68 ± 5 kg for females, were keen to participate. All subjects 
were right-handed and informed no history of neuromuscular disorders.  

Each subject performed a sustained isometric handgrip contraction using a digital dynamometer until 
voluntary fatigue. Surface electromyographic (sEMG) signals were recorded from the flexor carpi radialis 
(FCR) muscle using standard Ag/AgCl surface electrodes [15]. The electrode’s placement and the skin’s 
preparation followed standard EMG acquisition guidelines to ensure signal quality and reproducibility. 

Participants were comfortably seated, and no specific constraint was applied to the joint angle beyond 
maintaining a stable posture throughout the recording. They received verbal encouragement to sustain 
their grip for the maximum duration possible, until a visible and self-reported decline in force indicated 
the onset of fatigue. Simultaneous acquisition of EMG and grip force data allowed for accurate alignment 
of neuromuscular activity with muscular performance over time 
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2.2. Data Acquisition and Signal Preprocessing 
sEMG signals were recorded from the flexor carpi radialis (FCR) muscle using standard Ag/AgCl 

electrodes placed over the muscle belly. Acquisition was performed with an ESP32 Wroom 

microcontroller, which provided a 12-bit analog-to-digital conversion with a 2 kHz sampling frequency 
[16]. This configuration ensured sufficient resolution and temporal accuracy for detecting subtle 
variations in neuromuscular activation associated with fatigue. The recorded sEMG signals are buried in 
noise. Consequently, a bandpass filter with cut-off frequencies 5Hz up to 500Hz was applied to suppress 

movement artifacts and high-frequency noise, while a 50 Hz notch filter eliminate powerline interference 
[17] (see Figure. 2). Each filtered signal was segmented into 50 equal-length non-overlapping windows, 
allowing for local analysis of fatigue progression over time. Importantly, the EMG and grip force signals 
(see Figure 3) were acquired simultaneously and time-aligned, enabling each EMG segment to be 
associated with a corresponding force value. 

 

 
Figure 2.  
Filtered EMG Signal Acquired During Sustained Contraction. 
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Figure 3.  
Observed Grip Force Evolution Over Time. 

 
2.3. Feature Extraction 

Eleven features were computed for each EMG segment to capture signal characteristics across time, 
time-frequency, and nonlinear domains. The selected features included Mean Absolute Value (MAV), 
Integrated EMG (IEMG) [3] Root Mean Square (RMS), Amplitude Range, Variance, and Waveform 
Length for the time domain. In the time-frequency domain, the S-transform and Wigner-Ville 
distribution were used. Entropy and Hilbert-Huang transform variance were computed as nonlinear 
descriptors. These features were chosen based on their strong correlation with force and their frequent 
appearance in fatigue-related EMG studies. These are used as input to the classification and regression 
models after being normalized.  
 
2.4. Classification Models 

Three supervised classification algorithms were employed in this study to identify muscle fatigue 
phases based solely on EMG features: Linear Discriminant Analysis (LDA), Quadratic Discriminant 
Analysis (QDA), and Support Vector Machine (SVM) with a linear kernel. Each of these models was 
trained using a matrix of 11 features extracted from EMG signal segments, with corresponding labels 
representing one of three fatigue states: non-fatigue, transition, or fatigue. The selection of these models 
was motivated by their complementary strengths in handling different data distributions and decision 
boundary complexities. 

Linear Discriminant Analysis (LDA), assuming that each class’s data are normally distributed with 
matching covariance matrices, Linear Discriminant Analysis (LDA) stands as a traditional classifier; it 
projects features from a high-dimensional space into a lower one, seeking to increase the gap between 
class means and reduce variance within classes. Widely employed in EMG-based fatigue detection, LDA 
owes its frequent use to simplicity and interpretability—particularly when data separate linearly.  

The linear decision boundaries produced by LDA are computationally efficient, making it 
particularly suitable for real-time applications where quick inference is required. Although LDA 
performs well when the class distributions overlap moderately and are roughly Gaussian, its 
performance may decline when the true class boundaries are nonlinear or when the class covariances 
differ significantly. 

Quadratic Discriminant Analysis (QDA) extends LDA by allowing each class to have its own 
covariance matrix, thus relaxing the assumption of homoscedasticity. This enables QDA to model more 
complex, curved decision boundaries, which can better fit data exhibiting nonlinearity in the feature 
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space. In the case of EMG signals, where the feature distributions across different fatigue states may 
vary in both shape and spread, QDA can provide enhanced discrimination performance compared to 
LDA. However, this flexibility comes at the cost of increased model complexity and a higher number of 
parameters to estimate, making QDA more sensitive to overfitting, particularly when the training 
dataset is limited or imbalanced. Nevertheless, when the class-specific distributions are distinct, QDA 
can significantly outperform linear models. 

Support Vector Machine (SVM) with a linear kernel was also utilized due to its robustness and 
strong theoretical foundations in maximizing the margin between classes. SVM aims to find the optimal 
hyperplane that separates the data classes with the largest possible margin, leading to better 
generalization performance. The use of a linear kernel assumes that the classes can be effectively 
separated in the original feature space without the need for nonlinear transformation. This assumption 
is consistent with prior findings suggesting that well-selected EMG features may form linearly 
separable clusters for different fatigue stages. SVMs are particularly powerful in high-dimensional 
spaces and are less prone to overfitting when the number of features exceeds the number of 
observations.  

Their insensitivity to outliers and strong performance on small datasets make them well-suited for 
biomedical applications such as fatigue phase classification. 

Across the board, the three classifiers—LDA, QDA, and linear SVM—were selected due to a 
balance struck among interpretability, computational efficiency, and classification strength; their 
relative effectiveness was assessed to identify the best fit for fatigue phase classification using EMG-
derived features. 

Drawing on Demura, et al. [18] the fatigue phase onset linked to force falling beneath 30% of 
maximum voluntary contraction (MVC)—a pattern notably observed in males. Their findings showed 
that men’s sustained force decreased to about 26% MVC, reinforcing that such a threshold marks a clear 
fatigue condition. Here, segments registering force ≥90% MVC were classified as non-fatigue; those 
ranging from 70–90% as transition; and segments at or below 70% as fatigue. This method of 
thresholding enabled a segmentation of muscle performance during sustained contraction that aligns 
with physiological expectations. 
 
2.5. Regression Approach 

A multiple linear regression (MLR) model was implemented to estimate continuous muscle force 
values directly from the EMG-derived feature matrix. Unlike classification models, which assign 
discrete class labels to predefined fatigue phases (non-fatigue, transition, fatigue), the regression 
approach retains the continuous nature of the underlying physiological signal. MLR is a statistical 
method that models the relationship between one dependent variable—in this case, the observed 
muscular force—and multiple independent variables, represented by the eleven EMG features extracted 
from each signal segment. 

The MLR model was trained using paired EMG and force data obtained during voluntary isometric 
contraction tasks. By learning the optimal weights that link each feature to the output force, the model 
becomes capable of predicting continuous force levels from previously unseen EMG data without 
requiring any information about class labels. This characteristic is particularly advantageous, as it 
avoids the need for manual or automated labelling of fatigue phases during the test phase—thus 
enhancing applicability in real-world, real-time settings. 

Once the predicted force signal had been obtained, processing followed using thresholds 
predetermined by the subject’s Maximum Voluntary Contraction (MVC)—namely, at 90% and 70% 
MVC. This procedure divided the predicted force into three segments, each reflecting the fatigue phases 
applied in the classification models. Segments with predicted force above 90% MVC received the non-
fatigue label; those between 70% and 90% were classified as transition; values under 70% were 
associated with fatigue. By means of this post-processing step, continuous force outputs were effectively 
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reclassified into discrete fatigue stages, which enabled a straightforward comparison of classification 
versus regression methods. 

This method drew on EMG data to estimate fatigue in a way that mirrored how muscle force 
typically diminishes—gradually, not in steps. Instead of relying on discrete class labels that often jump 
from one state to another without nuance, the regression-based model traced changes more fluidly; no 
sharp transitions were imposed. Because it didn’t require predefined fatigue markers at the point of 
inference, it proved useful in capturing the subtle and continuous decline in muscular output. As a 
result, the approach created a functional middle ground—merging the detail of continuous signal 
modelling with the structure of categorical fatigue staging. 
 
2.6. Performance Evaluation Metrics 

Classification and regression metrics were used for Model performance evaluation.  For classification, 
accuracy, precision, recall, F1-score, and specificity were calculated based on confusion matrices. For the 
regression model, the coefficient of determination (R²), mean absolute error (MAE), root mean square 
error (RMSE), and Pearson correlation coefficient (r) were employed to evaluate force prediction 
accuracy and its consistency with observed values. 
 

3. Results 
3.1. Correlation Between EMG Features and Force 

To evaluate the physiological relevance of each extracted EMG feature in relation to muscle output, 
Pearson correlation coefficients were calculated between each feature and the corresponding observed 
force values across all segments. As reported in Table 1, the results indicate that most features exhibit 
strong linear relationships with muscular force, thereby confirming their suitability for both regression 
and fatigue classification tasks. 

Within the time domain, features such as Mean Absolute Value (MAV), Waveform Length, Root 
Mean Square (RMS), Integrated EMG (IEMG), and Teager-Kaiser Energy (TKEO) all demonstrated 
high positive correlations (r ≥ 0.96). These features reflect the amplitude and energy content of the 
EMG signal, which naturally increase with muscle contraction intensity. Notably, MAV, WL, and 
IEMG each achieved a correlation coefficient of 0.97, highlighting their robustness as predictors of 
force. Variance also showed a strong correlation (r = 0.95), indicating that fluctuations in signal 
consistency track well with changes in force output. Amplitude Range, although positively correlated (r 
= 0.86), yielded slightly lower values, possibly due to its sensitivity to noise and transient spikes. 

In the time-frequency domain, both the S-Transform (Mean) and Wigner-Ville Distribution (Mean) 
achieved high correlations of 0.97 and 0.95, respectively. These results validate the usefulness of 
spectral information in characterizing force-dependent EMG changes, particularly as muscle fatigue 
induces shifts in frequency content. 

Interestingly, in the nonlinear domain, Hilbert-Huang transform (variance) showed a solid positive 
correlation (r = 0.94), while Shannon Entropy displayed a negative correlation (r = -0.89). This inverse 
relationship supports the notion that as muscle fatigue increases, EMG signals become more chaotic and 
less predictable. 

Altogether, the observed correlation patterns demonstrate that the selected 11 features capture 
essential neuromuscular dynamics and are physiologically aligned with force production and fatigue 
evolution. 
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Table 1.  
Pearson Correlation between EMG Features and Observed Force. 

No. EMG Feature Domain r (Pearson) 

1 Mean Absolute Value 

Time 
 

0.97 
2 Waveform Length 0.97 

3 Amplitude Range 0.86 
4 Root Mean Square 0.96 

5 Variance 0.95 
6 Integrated EMG 0.97 

7 Teager-Kaiser Energy  0.96 
8 S-Transform  Time-Frequency 

 
0.97 

9 Wigner-Ville Distribution 0.95 

10 Shannon Entropy Nonlinear 
 

-0.89 
11 Hilbert-Huang transform  0.94 

 
3.2. Classification Model Performance 

As resumed in Table 2, three supervised classification models—Support Vector Machine (SVM), 
Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA)—were compared 
based on their ability to assign EMG segments to one of three fatigue phases: Non-fatigue, transition, or 
fatigue. Among them, QDA achieved the highest overall classification performance, with an accuracy of 
82%, a precision of 81%, a recall (sensitivity) of 75%, and a specificity of 90%. This indicates that QDA 
not only captured a large proportion of correctly classified instances but also minimized false positives 
and negatives, making it the most physiologically consistent classifier among the three. 
 
Table 2.  
Classification Model Performance. 

Classifier SVM LDA QDA 
Accuracy (%) 65 71 82 

Precision (%) 24 58 81 
sensitivity (%) 33 50 75 

F1-score (%) 28 54 78 

Specificity (%) 73 75 90 

 
LDA came next with an accuracy of 71%, showing strong results for precision and specificity—58% 

and 85%, respectively. Its recall, slightly lower at 70%, points to occasional misses in identifying some 
true transition or fatigue instances. Still, even with its more basic linear framework, LDA managed to 
strike a reasonable trade-off between detecting actual fatigue and avoiding false positives, producing a 
mapping of fatigue progression that remained fairly consistent. 

In contrast, SVM with a linear kernel demonstrated the weakest performance, with 65% accuracy, 
only 24% precision, and a low F1-score of 28%, revealing a tendency to produce both false positives and 
negatives, especially during ambiguous states. Although SVM maintained reasonable specificity (73%), 
its sensitivity (33%) and low F1-score indicate that it struggled particularly with detecting the 
intermediate transition phase. 

These quantitative findings are highly consistent with the visual comparison presented in Figure 4, 
which displays the EMG signal color-coded according to the fatigue phase labels assigned by each 
model (green: non-fatigue, blue: transition, red: fatigue). QDA exhibited smooth and continuous phase 
boundaries, effectively capturing the gradual shift from non-fatigue to fatigue, including a well-
delineated transition zone. The transitions identified by QDA align closely with the expected 
physiological decay in force and EMG patterns, reflecting its superior ability to model non-linear 
boundaries across the feature space. 

LDA, while slightly less precise, also produced interpretable segmentation with fairly consistent 
regions. However, some misassignments were observed, particularly at the boundaries between 
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transition and fatigue phases. These brief classification errors may result from the linear decision 
surface's inability to fully capture the overlap between feature distributions. 

SVM, by comparison, generated more fragmented and noisy segmentation, with frequent 
oscillations between transition and fatigue labels, even within stable signal regions. This suggests poor 
generalization and an inability to model nuanced class boundaries in the EMG feature space. 

The models were generally effective at tracking fatigue development, yet their accuracy in 
pinpointing the middle phase differed considerably—likely because muscular activation patterns overlap 
in this stage. QDA’s capacity to handle separate covariance structures for each class enabled 
segmentation that appeared more consistent with physiological behavior. This highlights that choosing 
the right model depends not only on statistical metrics but also on how well the results can be 
interpreted in clinical or biomechanical terms, particularly when dealing with gradual shifts like muscle 
fatigue. 
 

 
Figure 4.  
Color-coded EMG Signal Segmentation Based on SVM, LDA, and QDA 
Classification Models (Non-Fatigue : Green, Transition : Blue, Fatigue : 
Red). 
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3.3. Regression-Based Estimation of Force 
To deepen the analysis beyond discrete classification, a Multiple Linear Regression (MLR) model 

was implemented to predict continuous force values directly from the same EMG feature matrix. Unlike 
classification, which forces each segment into a fixed label, this regression-based approach preserves the 
continuity of muscular effort. The resulting predicted force signal was then segmented into three fatigue 
phases using the same MVC-based thresholds applied to the observed force. This ensured direct 
comparability between both approaches. 
As shown in Figure 5, the predicted force trajectory closely followed the observed force curve across the 
entire contraction period. The model achieved a Pearson correlation coefficient of 0.96, demonstrating 
strong agreement between predicted and actual values. Minor discrepancies appeared primarily during 
the early contraction phase and in late fatigue, where EMG signal quality tends to decline due to 
physiological and measurement factors. 
The MLR model, overall, demonstrated strong capability in recreating force output from EMG signals, 
providing a fluid and physiologically plausible view of how fatigue advances. Steering clear of sudden 
jumps between categories, this approach to continuous force estimation reveals nuanced shifts, aligning 
more closely with the slow progression typical of neuromuscular deterioration, thus presenting a 
valuable option beyond strictly discrete classification methods. 
 

 
Figure 5.  
Comparison Between Observed and Predicted Force Using the Multiple Linear Regression Model. 

 
3.4. Comparison Between Observed and Predicted Force Using the Multiple Linear Regression Model 

To visualize how fatigue phases unfold over time, the raw EMG signal of the test subject was 
segmented and color-coded on the actual observed force trajectory basis. As seen in Figure. 6, the EMG 
signal was segmented into green (non-fatigue), orange (transition), and red (fatigue) zones using the 
predefined force thresholds. The segmentation revealed a clear and physiologically coherent evolution of 
fatigue, with increased amplitude and signal density accompanying the decline in force. 
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Figure 6.  
Reference Fatigue Phase Mapping Based on Observed Force Thresholds. 

 
This representation served as the reference for comparison with both classification and regression-

based mappings. It confirmed that fatigue onset is not abrupt but follows a gradual and progressive 
transition, reinforcing the awareness of adopting continuous or flexible models. 
 
3.5. EMG Phase Mapping Based on Regression Output 

Finally, the fatigue phases inferred from the MLR-predicted force were mapped back onto the EMG 
signal. The resulting visualization (Figure 6), displays color-coded EMG segments based on regression-
derived force thresholds. The mapping closely aligns with the ground truth as can be seen in Figure 5, 
emphasizing the regression model’s capacity to reconstruct fatigue phases accurately.  

The resulting segmentation offered a smooth representation of fatigue evolution and aligned closely 
with the reference force-based mapping (see Figure 7). 
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Figure 7.  
Fatigue Phase Mapping Based on Regression-Predicted Force. 

 

4. Discussion  
4.1. Comparative Evaluation of Classification and Regression Strategies 

Here, two fundamentally different approaches—classification and regression—were tested to 
describe local muscle fatigue using features derived from surface electromyography (sEMG). QDA and 
LDA, among the classifiers, managed to separate non-fatigue and fatigue states with reasonable success; 
however, all classifiers, including SVM, struggled—especially in the transition phase, where muscular 
activity patterns overlap and boundaries blur. On the other hand, the MLR model provided a continuous 
estimate of force, which—once physiological thresholds were applied—permitted a segmentation that 
avoided rigid classification lines; this better represents the slow, ongoing progression typical of 
neuromuscular fatigue. This contrast in outcomes highlights how challenging it is to model gradual 
fatigue transitions and suggests that continuous models, despite their complexity, might capture the 
nuances that discrete classes miss. 
 
4.2. Reliability of EMG-Based Fatigue Detection Without Force Input 

The regression approach, on another side, provided a continuous representation of muscle 
performance by estimating force directly from EMG features. This allowed for the identification of 
fatigue phases through force-based segmentation without rigid categorical boundaries. The regression 
model demonstrated strong correlation with observed force values and showed improved temporal 
consistency in phase mapping, which may better reflect the physiological progression of fatigue. 

Overall, while classification enables rapid decision-making and discrete labelling, regression captures 
the gradual and evolving nature of fatigue more effectively, highlighting the complementary strengths of 
both approaches and justifying their comparative evaluation. 
 

5. Conclusion  
This study investigated the modelling of local muscle fatigue phases from surface EMG signals using 

both classification and regression approaches. By analysing a reduced set of eleven EMG features across 
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time, time-frequency, and nonlinear domains, we trained and evaluated three classification models (SVM, 
LDA, QDA) and a Multiple Linear Regression (MLR) model. The different phases of fatigue were 
labelled based on thresholds derived from observed force levels, using criteria supported in the literature. 

While all models were able to capture key transitions in muscle activity, the regression model (MLR) 
provided the best alignment with the reference force trajectory. It delivered continuous outputs that 
enabled smooth phase segmentation and greater temporal coherence, particularly in the transition phase, 
which is often poorly captured by classifiers. Among classification models, QDA showed the optimal 
performance in both numerical metrics and phase mapping. 

Regression showed clear benefits by delivering fatigue evaluations that align closely with 
physiological patterns and offer smooth, consistent visual results — classification, on the other hand, 
proves useful when quick, distinct state recognition is essential; moving forward, exploring hybrid 
frameworks or leveraging deep learning could open new paths to boost both accuracy and robustness in 
tracking muscle fatigue through sEMG signals. 
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