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Abstract: In today's era of Big Data, maintaining high-quality data is crucial for effective data 
management. One key aspect of this is record linkage, which involves identifying, comparing, and 
merging records from different sources that refer to the same real-world entity. However, traditional 
record linkage methods struggle to keep up with the rapidly increasing volume and diversity of data. 
These methods often rely on labeled data, which can be expensive and difficult to obtain. To overcome 
these challenges, unsupervised blocking techniques have emerged as a promising alternative, allowing 
large-scale datasets to be managed efficiently without the need for pre-labeled data. In this article, we 
introduce a novel approach that integrates the Firefly Algorithm for optimized feature selection, 
Locality-Sensitive Hashing (LSH) for dimensionality reduction, and Length-based Feature Weighting 
(LFW) for improved data representation. Our methodology aims to enhance both the accuracy and 
scalability of record linkage in Big Data environments. Experimental results show that our approach is 
highly effective, demonstrating its potential to significantly improve data quality in large-scale datasets. 

Keywords: Blocking, Locality-sensitive-hashing, Firefly algorithm, Length-based feature weighting, Record Linkage. 

 
1. Introduction  

Effective data management largely depends on the quality of the Record Linkage (RL) process, 
which involves identifying, comparing, and merging records originating from multiple databases but 
representing the same real-world entity (see Figure 1). However, as data volume increases, the number 
of record pairs requiring comparison grows exponentially, making the linkage process increasingly 
difficult and computationally expensive. To address this issue, an initial step known as "blocking" is 
typically implemented prior to the linkage stage itself. This preliminary phase significantly reduces the 
number of comparisons by grouping similar records into separate blocks, thus simplifying the linkage 
task and making it practically feasible even for large-scale datasets [1]. 
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Figure 1.   
A summary of the record linkage process [2]. 

 
He The evaluation of record linkage methods, including those based on unsupervised blocking, 

relies on several essential metrics. Among these, the Reduction Ratio (RR) measures the effectiveness in 
reducing the number of comparisons made, while Pairs Completeness (PC) assesses how thoroughly all 
relevant matches have been identified. Pairs Quality (PQ) evaluates the accuracy of the process by 
analyzing the proportion of correctly matched pairs. Finally, a common approach to achieve a balanced 
evaluation is to calculate the harmonic mean between RR and PC, thus providing an overall measure of 
the record linkage performance [3]. 

The performance of record linkage techniques, including those that utilize unsupervised blocking 
strategies, is commonly evaluated using several key metrics: 

• Reduction Ratio (RR): This metric indicates the efficiency of the blocking process by measuring 
the reduction in the total number of comparisons. It is calculated using Equation (1): 

                                          𝑅𝑅 = 1 −
𝑁

|𝐴|∗|𝐵|
                             (1)                                                                       

  
Where N is the number of candidate record pairs after blocking, and ∣A∣×∣B∣ represents the 

total possible pairs from datasets A and B. 

• Pairs Completeness (PC): PC reflects the ability of the method to retrieve all true matches. It is 
expressed (2) as: 

 

                            𝑷𝑪 =
𝑵𝒎

|𝑴|
                                                 (2) 

 

         With Nm denoting the number of correctly identified true matches, and ∣M∣ the total number of 
actual matches in the data. 

• Pairs Quality (PQ): This metric evaluates the precision of the blocking technique by 
determining the proportion of correct matches among all proposed pairs. As shown in Equation 
(3): 

                                   𝑃𝑄 =
𝑁𝑚

𝑁
                                                 (3) 
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 Where Nm is the number of accurate matches and Nb is the total number of pairs generated post-
blocking. 
To balance completeness and efficiency, the harmonic mean of RR and PC is often used as a composite 
score. This is formally expressed in Equation (4): 
 

𝐹𝑅𝑅,𝑃𝐶 =
2 .𝑅𝑅 .𝑃𝐶

𝑅𝑅+𝑃𝐶
                                                  (4) 

In this article, we propose an unsupervised blocking method that combines the Firefly Algorithm 
[4] for feature selection, Locality-Sensitive Hashing (LSH) [5] for dimensionality reduction, and 
Length-based Feature Weighting (LFW) [6] for improved data representation. Our approach is 
designed to optimize both the quality and efficiency of the record linkage process, particularly in Big 
Data environments where traditional methods face limitations. 

The remainder of this article is structured as follows: Section 2 provides a review of related work, 
highlighting the limitations of existing methods and the need for a more effective approach. Section 3 
details our proposed methodology, explaining the integration of the Firefly Algorithm, LSH, and LFW. 
Section 4 presents the experimental setup and results, demonstrating the effectiveness of our approach. 
Finally, Section 5 concludes the article by summarizing our contributions and proposing future research 
directions. 
 

2. Related Work                              
T Record linkage has been extensively studied due to its importance in data integration and 

consolidation. Traditional methods can be broadly categorized into supervised and unsupervised 
approaches. Supervised methods rely on labeled data to train a model capable of predicting whether two 
records refer to the same entity [7-9]. These methods require a careful selection of blocking predicates, 
whose combination and evaluation directly impact the performance of the process. While effective, these 
methods are limited by their dependence on high-quality labeled data, which is often scarce and 
expensive to obtain. Additionally, supervised methods struggle to scale to large datasets with multiple 
attributes, and they require manual tuning of parameters, which can be time-consuming and error-
prone. In contrast, unsupervised blocking techniques have gained popularity due to their ability to 
handle large-scale datasets without the need for labeled data. Progress in this area has been advanced by 
Kejriwal and Miranker [10] who developed a method for learning unsupervised blocking schemes. This 
method automatically generates labeled data from a target dataset, leveraging the potential of machine 
learning to enhance the accuracy of data linkage. 

Their process begins by grouping records that share similar tokens, thereby forming initial clusters. 
Subsequently, a predefined window size is iteratively moved across these clusters, and pairs of records 
within this window are assessed. This assessment is conducted using the Term Frequency–Inverse 
Document Frequency (TF-IDF) measure [11] widely recognized for its ability to assess the relevance 
of words within a text. This technique quantifies the significance of terms within a specific context, thus 
facilitating the accurate identification of matches between records. This approach proves particularly 
valuable for efficiently processing large volumes of data while minimizing the need for manual 
intervention in the data linkage process. Unsupervised blocking methods classify data pairs as positive 
or negative based on their similarity score, established against specific thresholds. These classifications 
are used to evaluate blocking predicates through the Fisher Score [12] allowing for effective 
differentiation without the need for pre-labeled data, thereby reducing costs and labor. However, 
adjusting parameters such as window size, the number of pairs to label, and similarity thresholds is 
crucial for optimizing system performance. The computational load of the automatic labeling process 
increases with the dataset size, which may limit the applicability of this method in contexts involving 
large and complex data sets. 

Canopy Clustering [8, 13-16] involves creating overlapping clusters around randomly selected 
centroids, with records grouped according to predefined distance thresholds. The accuracy of selecting 
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distance thresholds and the number of centroids is essential for ensuring the effectiveness of this 
method. Despite its promise, this approach may present practical limitations depending on the type of 
data used. 

Canopy Clustering, when properly set up, can be more effective than traditional blocking methods. 
However, choosing the right distance thresholds is essential because too broad or too restrictive 
thresholds can adversely affect recall and precision rates. The authors of Fisher, et al. [17] introduced a 
clustering approach that uses string similarity to regulate block size, aiming to find the right balance 
between block quality and size to enhance performance. 

Moreover, the article O’Hare, et al. [1] discusses an unsupervised blocking method that simplifies 
data linkage by automating the selection and weighting of predicates. Yet, this method might struggle 
with generalizability across complex data sets and lacks transparency in its processes, which could make 
understanding and verifying the outcomes challenging. Carefully selecting parameters is vital for the 
success of Canopy Clustering, necessitating focused attention to ensure accuracy while reducing 
potential biases and computational demands. 

Locality-Sensitive Hashing [18, 19] is a technique that groups similar records together using hash 
functions aligned with a particular distance metric. It's known for its scalability and has a computational 
complexity of O (n), but it does require a lot of memory and may not perform well with datasets that 
have many duplicates. To address these challenges, several variations like FastMap [20] SparseMap 
[21] MetricMap [22] and LSB [23] have been introduced. Notably, MinHash LSH [24, 25] improves 
the estimation of Jaccard similarity [2] while also reducing the amount of storage needed. This 
approach breaks down records into k-shingles that are then represented in a sparse Boolean matrix. 
Through random permutations of the matrix rows, MinHash LSH calculates the Jaccard similarity, 
creating MinHash signatures that help efficiently cluster records by their similarity. The success of this 
technique largely depends on carefully adjusting parameters to balance speed and accuracy effectively. 

The study in Cui [26] explores a two-level blocking method for entity resolution that combines 
textual similarity with semantic constraints. By leveraging Locality-Sensitive Hashing (LSH) and a 
domain tree, this approach addresses the limitations of traditional methods, offering both scalability and 
accuracy. 

In Gionis, et al. [18] the authors tackle the challenge of performing nearest-neighbor queries in 
high-dimensional databases, which are often affected by the "curse of dimensionality." To improve 
search efficiency and scalability, they propose a specialized hashing strategy. 

The work in Karapiperis and Verykios [27] introduces the Λ-fold Redundant Blocking Framework, 
which applies LSH to identify pairs of anonymized records. It evaluates how different hashing function 
families perform when dealing with anonymized data and their ability to preserve distances. To further 
enhance security, the study presents a Secure Multi-Party Computation (SMC) protocol that allows safe 
comparison of record pairs without compromising privacy. 

In Karapiperis and Verykios [27] the focus is on iterative record linkage, where match and merge 
operations are repeated until convergence. The proposed [28] Iterative Locality-Sensitive Hashing 
(ILSH) technique dynamically merges LSH-based hash tables to improve blocking efficiency and 
accuracy. Additionally, a suite of record linkage algorithms called HARRA (Hashed Record Linkage) is 
introduced, optimizing performance by leveraging dataset characteristics. 

The study in Simonini, et al. [29] presents Blast, an entity resolution method that integrates 
"loose" schema information and uses LSH for scalable processing. The approach consists of three key 
phases: extracting schema information, schema-aware blocking, and schema-aware meta-blocking. By 
leveraging attribute partitioning and aggregate entropy, Blast enhances traditional blocking methods 
and improves the quality of generated blocks. 

The research in Wang, et al. [25] introduces a semantic-aware blocking framework for entity 
resolution, which incorporates both textual and semantic features through LSH. The study examines 
how similarity metrics perform across LSH families and explores the integration of semantic similarity 
across different similarity spaces, ultimately improving blocking precision. 
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Feature selection is a fundamental challenge in record linkage, as it aims to identify the optimal 
subset of variables to enhance the accuracy and efficiency of record matching methods. However, since 
this problem is NP-hard, exact methods quickly become impractical due to their high computational 
complexity. To address this limitation, research increasingly favors stochastic approaches, particularly 
heuristics and metaheuristics, which provide effective solutions for feature selection [30]. Three main 
strategies are commonly used in this context: Filter, Hybrid, and Embedded approaches [31]. Various 
metaheuristic techniques have been explored to tackle this challenge. Some studies focus on using a 
single metaheuristic [8, 32-36] while others combine multiple metaheuristic techniques [37-43] to 
optimize both exploration and exploitation in the feature selection process. 

In this perspective, study Abualigah [6] presents a two-stage text document clustering method. 
The first stage applies the Particle Swarm Optimization algorithm to optimize feature selection, while 
the second stage incorporates several advanced versions of the Krill Swarm Algorithm to refine 
document clustering. Inspired by this approach, I integrated the first stage into my own project to 
enhance feature selection, leveraging its results to develop a more targeted and effective methodology. 
To overcome the limitations of existing record linkage methodologies, we propose an integrated 
approach combining unsupervised blocking techniques, the Firefly Algorithm, and LSH. This 
methodological synergy optimizes feature selection while improving clustering efficiency, offering a 
more robust and scalable solution. By enhancing both accuracy and scalability, our approach makes a 
significant contribution to advancements in the field of record linkage. 
 

3. Research Method  
Our proposed methodology consists of three main components: feature selection using the Firefly 

Algorithm, dimensionality reduction using Locality-Sensitive Hashing (LSH), and data preprocessing 
using Length-based Feature Weighting (LFW). The goal is to optimize the record linkage process by 
improving both the accuracy and efficiency of blocking. The Firefly Algorithm [44] is used to identify 
relevant features, complemented by the Learning Feature Weighting (LFW) strategy [6] to better 
distinguish informative attributes from non-relevant elements. To optimize the blocking phase, we 
integrate Locality-Sensitive Hashing (LSH) [45] reducing the number of required comparisons while 
improving the overall accuracy of record linkage. Experiments conducted on medium-sized datasets 
demonstrate significant improvements in both speed and accuracy. Designed for scalability, our 
approach represents a significant advancement in record linkage optimization and its large-scale 
application(Figure 2). 
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Figure 2.  
Our General Approach for Optimizing Record Linkage with the Firefly Algorithm and LSH. 

 
3.1. Feature Selection Using the Firefly Algorithm (FSUFA) 
3.1.1. Step 1-Representing Dataset Rows with LFW 

• Each dataset row is represented as a “firefly” 

• The attributes of each row are concatenated to form a text. 

• The size of each dataset row is evaluated (Size I). 

• LFW assigns a weight to each term based on its frequency and significance in the resulting text.       
This weighting is computed using Equation (5):     

 

                         LFW{i,j} =
TF(i,j)×DF(j)

maxTF(i)×log (
n

DF(j)
)
                                                                     ( 5) 

Example: 
 
Table 1.  
Two sample tuples from the restaurant dataset  [2]. 

Name Address City Cuisine 
Arnie morton’s of chicago 435 s. la cienega blv los angeles American 
Campanile 624 s. la brea ave. los angeles American 

 
The two records presented in Table 1 are sample entries from a restaurant dataset. In the 

application of the FAFS to the information from the two restaurants, each row is treated as a document, 
and each word is considered a potential feature. Feature initialization is performed using the LFW 
method, which adjusts the initial representation of terms based on their relative importance. For 
example, the terms “arnie” (0.5), “morton’s” (0.8), “chicago” (0.7), and “american” (0.8) are assigned 
specific weightings, reflecting their relevance in the context of record linkage. These initial values refine 
the document representation by highlighting the most discriminative terms, thereby enhancing the 
efficiency of the feature selection process. 
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3.1.2. Step 2 - Discretization of Positions with The Sigmoid Function 
The LFW output vector, which represents a firefly, is subjected to position discretization using the 
sigmoid function. The process is mathematically defined by Equation (6): 

 

                          S(x{i,j}) =
1

1+exp 
(−x{i,j})

                                                                  (6) 

 
Where xi,j denotes the position of a firefly i in dimension j, indicative of the intensity of the feature 

considered for selection. This function converts the continuous intensity of features into probabilities 
between 0 and 1. 
If (rand < S(xij)) then xij= 1; else xij=0;                                                                  
The selection of features by each firefly is determined by a stochastic condition: 

• If rand<S(xij), then xij=1, meaning that firefly i selects feature j, Otherwise xij=0, indicating that 
the feature is omitted.  

Here, randrand is a random number between 0 and 1, introducing an element of chance into the 
feature selection process. This allows the fireflies to adaptively navigate through the feature space in 
search of the optimal combination. 
 
3.1.3. Step 3 - Calculation of Intensity with the Objective Function 

This approach leverages the LFW method to assess the relevance and uniqueness of dataset rows by 
identifying the most significant terms while considering their rarity within the dataset. By assigning an 
LFW-based score, it enables the identification of distinctive records, facilitating their classification and 
grouping based on their specificity. At a key stage of the algorithm, the objective function evaluates the 
intensity of each firefly (representing a dataset row) by summing the LFW weights assigned to the 
document’s terms, thereby estimating its contribution to record differentiation. The computation is 
formally given by Equation (7): 
                 

                                          score = ∑ 𝐿𝐹𝑊(𝑥𝑖𝑗)
𝑑
𝑗=1                                                                (7) 

 
Here, d represents the length of the row (size), xij is the j-th component (term) of the i-th "firefly", 

and LFW (xij) is the LFW weighting associated with the term xij. This objective function measures the 
quality of each term, guiding the iterative optimization process towards more relevant solutions. 

 
3.1.4. Step 4 - Optimization by Movement of "Fireflies" 

In the algorithm, the movement of fireflies is designed to optimize feature selection by prioritizing 
the most relevant ones. This process enables the exploration of the solution space to identify new term 
combinations, avoids local minima through an integrated random component, and gradually converges 
toward an optimal solution. The goal is to ensure a coherent and informative representation of each 
dataset row. 

The fundamental principle is to guide the fireflies toward positions with higher light intensity, 
representing improved feature selection quality. This step is carried out according to the following 
process: 

Intensity Comparison: For each pair of "fireflies" (dataset row), the algorithm compares their 
respective intensities. If the intensity of "firefly" k is greater than that of "firefly" I (Ik> Ii), it indicates 
that the dataset row representation associated with k is better than that associated with i. 

Movement of "Fireflies": When a "firefly" k is brighter than i, "firefly" i is moved towards k to 
improve its own intensity. This movement is a function of the distance between the "fireflies," their 
relative attractiveness, and a random component. 
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Calculation of the Distance r: The distance between two "fireflies" is calculated using the Euclidean 
distance. This allows for determining the proximity in the solution space. This is mathematically 
expressed in Equation (8): 

 

                                       𝑟𝑖𝑘 = √∑ (x𝑖𝑗 − xkj)
2𝑑

𝑗=1                                                                                             (8) 

 

Calculation of Attractiveness β: The attractiveness   is a function of the distance between the 
fireflies. A shorter distance and a higher intensity of the target firefly result in greater attractiveness. 
This is defined in Equation (9): 

                            𝛽(𝑟) = 𝛽0  ∗ 𝑒−𝛾𝑟                                                                                                        (9) 
              
                An alternative expression of the distance is also given in Equation (10): 
 

                    r(i, k) = |x(i⃑) − x(k⃗ )| = √∑ (xij − xkj)
d
j=1                                                                         (10) 

 

Updating the Intensity: Where β0 is the attractiveness at r=0, and γ is a light absorption coefficient. 
The position of a "firefly" in the algorithm is updated by moving closer to brighter fireflies and 
incorporating a random movement, This is formally defined in Equation (11):: 

                  𝑥𝑖 = 𝑥𝑖 + 𝛽(𝑟) ∗ (𝑥𝑘 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 −
1

2
)                                                                  (11) 

 
This approach maintains a balance between attraction to optimal solutions and exploration of the 

search space to enhance the diversity of considered solutions. At the end of the process, the best-
performing positions are converted into a binary representation, facilitating the identification of the 
most relevant features for the application of the LSH method. 

To ensure a reliable and efficient exploration of the feature space, we adopted the parameter values 
recommended by Arora and Anand [38]. Specifically, the initial attractiveness coefficient was set to 

β0=1.0, the light absorption coefficient to γ=1.0, and the randomization parameter to α=0.2. These 
values are known to provide a good balance between local exploitation and global exploration, which 
supports robust and stable optimization performance in bio-inspired algorithms. The pseudo-code 
depicts the proposed Feature Selection Using the Firefly Algorithm.. 
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Table 2. 
Feature Selection: Firefly-LFW Algorithm. 

Algorithm 1: Firefly Algorithm for Feature Selection 
1: Input: Dataset 
2: A firefly is a line in the dataset = (z1, z2, ..., zd). 
3: Concatenation of the line attributes. 
4: LFW representation for each segment (Eq. 1). 
5: Discretization according to (Eq. 2 & Eq. 3). 
6: Randomly generate a swarm of fireflies. 
7: Calculate the dimension of the fireflies’ position: d = line size. 
8: Define the light intensity as score I = score (Eq. 4). 
9: Set a maximum number of iterations: maxIterations. 
10: Initialize t = 0. 
11: while t < maxIterations do 
12:      for i = 1 to n do 
13:          for k = 1 to l do 
14:              if  Ik > Ii then 
15:                  /* Move firefly i towards firefly k following these steps */ 
16:                  Calculate the distance r (Eq. 5). 

17:                  Calculate the attractiveness β (Eq. 6 & Eq. 7). 
18:                  Calculate the new position zi of the firefly (Eq. 8). 
19:                  Evaluate the firefly by updating the light intensity (score: Eq. 4). 
20:              end if 
21:          Rank the fireflies and find the current best. 
22:          Record the position of the current best firefly (in real values). 
23:          Discretize the real position of the best firefly (Eq. 2 & Eq. 3). 
24:          end for 
25:      end for 
26:      Increment t = t + 1.  
27:  end while 
28: Return: Selected relevant features. 

 
3.2. Dimensional Reduction With LSH 

In the second phase of our methodology, we extend the process initiated with feature selection using 
the Firefly-LFW algorithm by applying dimensionality reduction based on LSH. This step relies on 
three complementary techniques: shingling, MinHashing, and banding, which optimize data structuring 
and organization. The objective is to efficiently group similar rows while reducing the computational 
complexity of record linkage. Integrating LSH into the clustering process enhances both the accuracy 
and efficiency of record matching while minimizing the computation time required to identify similar 
row pairs. The key steps of this approach are presented in the following pseudocode.  
The pseudo-code (See Table 3) illustrates the proposed Dimensionality Reduction with LSH Algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



855 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 846-863, 2025 
DOI: 10.55214/25768484.v9i6.7970 
© 2025 by the authors; licensee Learning Gate 

 

Table 3. 
Algorithm for Record Linkage Using LSH and Firefly with LFW. 

Algorithm 2: Record Linkage Using LSH and Firefly with LFW 

1: Input: Dataset, Threshold 
2: Output: Set of similar pairs 
3: Apply Function Firefly LFW Algorithm to dataset D to obtain the selected features; 
4: Initialize hash functions; 
5: Initialize hash tables; 
6: procedure LSH(D, t) 
7:     Initialize an empty set S; 
8:     for each item x in D do 
9:         for each hash function h do 
10:             Compute the hash code h(x); 
11:             Insert x into the corresponding bucket in the hash table using the hash code; 
12:         end for 
13:     end for 
14:     for each item x in D do 
15:         for each hash function h do 
16:             Compute the hash code h(x); 
17:             Retrieve the bucket from the hash table using the hash code; 
18:             for each item y in the bucket do 
19:                 if similarity(x, y) ≥ t then 
20:                     Add (x, y) to S; 
21:                 end if 
22:             end for 
23:         end for 
24:     end for 
25:     return S; 
26: end procedure 

 
The Length-based Feature Weighting technique is used to assign weights to features based on their 

frequency and importance in the dataset. This step enhances the representation of the data and 
facilitates more accurate feature selection, ultimately improving the quality of the record linkage 
process. 

 

4. Results and Discussion  
In our experimental evaluation, we compared our blocking approach to the one described in O’Hare, 

et al. [1] which also assesses its performance against several existing methods. To ensure a thorough 
analysis and an objective comparison, we included the same reference techniques in our study. This 
approach allowed us to evaluate performance using key metrics such as RR, PC, and PQ for the blocking 
phase, as well as Precision (Prec), Recall (Rec), and their harmonic mean for the record matching phase. 
To maintain analytical consistency, we adopted a two-step approach similar to the one described in 
O’Hare, et al. [1] combining a blocking phase followed by a record matching process. However, instead 
of using the TF-IDF method, we used the LFW technique for the matching phase. This strategic choice 
enabled us to make direct comparisons with the results reported in O’Hare, et al. [1]. The objective of 
this study is to precisely evaluate the effectiveness of our method compared to existing approaches and 
to highlight the advantages it offers in terms of performance and accuracy in record linkage. 
 

4.1. Benchmarking Datasets 
As part of our evaluation, we selected five datasets to assess the performance of our approach across 

various contexts. These datasets are essential for evaluating the effectiveness and relevance of our 
method in real-world data scenarios. Among them, two are specifically dedicated to deduplication, while 
the remaining three focus on record linkage. Each dataset presents distinct challenges, such as 
variations in data structuring, the presence of redundant values, and the need to establish 
correspondences between heterogeneous databases. By leveraging this diversity, our study aims to 
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demonstrate the capability of our approach to accurately identify and process duplicates, ensure precise 
record matching, and adapt to various domains and data structures. The characteristics of the selected 
datasets are detailed in Table 4. 
 
Table 4.  
Table of Characteristics of the Evaluated Datasets.  

Dataset Name Type Records Number of Attributes True matches 
Restaurant Deduplication 864 5 112 

DBLP/ACM Linkage 4910 4 2224 
Amazon/GoogleProduct Linkage 4598 4 1300 

Clean-Synth Deduplication 10 000 10 2000 
Dirty-Synth Deduplication 10 000 9 26 692 

 
4.2. Experimental Results and Discussion 

The performance of our approach was rigorously evaluated across multiple datasets, each posing 
specific challenges in record linkage. On the Restaurant dataset, our method achieved outstanding 
results, with a Recall Ratio (RR) of 0.999, Pair Completeness (PC) of 0.998, and an F-measure of 0.998, 
indicating a near-perfect balance between recall and completeness. Most notably, it attained a Pair 
Quality (PQ) of 0.612, significantly higher than competing methods, which ranged between 0.001 and 
0.466, despite high PC values. These results confirm the ability of our approach to minimize false 
positives while preserving high recall, demonstrating its robustness and effectiveness for deduplication 
tasks in challenging scenarios. A comparative summary of the numerical results is presented in Table 5, 
and a visual representation of the performance is shown in Figure 3. 
 
Table 5.  
Elaborate on the numerical results related to the restaurant. 

Method RR PC 𝐹RR.PC PQ 

Our method 0.999 0.998 0.998 0.612 

Non-standard key-based blocking 0.999 0.991 0.995 0.466 
SortedNeighbourhood 0.772 1.000 0.871 0.001 

CanopyClustering 0.998 1.000 0.999 0.176 
MinHash-LSH 0.981 1.000 0.990 0.016 

Méta-bloquants 0.936 0.998 0.965 0.015 

 

 
Figure 3.  
Detail numerical for the restaurant. 
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Table 6 presents the numerical results obtained on the DBLP-ACM dataset, highlighting the 
performance of our method in comparison to several established techniques. The evaluation of our 
method on the DBLP-ACM dataset shows a Reduction Rate (RR) of 0.971, which is slightly lower than 
that of Non-Standard Key-Based Blocking (0.990). This difference reflects a deliberate trade-off, where 
our approach performs slightly more comparisons in order to avoid missing relevant matches. This 
strategic choice is justified by the results on other metrics: our method achieves a Pair Completeness 
(PC) of 0.998, compared to 0.987 for Non-Standard Blocking, indicating a superior ability to cover true 
matches. The most decisive factor remains the Pair Quality (PQ): our approach reaches 0.263, while all 
other methods, including Non-Standard Blocking, fail to exceed 0.036. This clearly shows that our 
system produces significantly fewer false positives, while maintaining nearly complete coverage. 
Therefore, although our method achieves a slightly lower reduction, it provides much higher overall 
precision. It strikes an optimal balance between RR, PC, and PQ, demonstrating its robustness, noise 
control, and relevance in contexts where the quality of matches is critical. 

 
Table 6.  
Elaborate on the numerical results related to the DBLP-ACM. 

Method RR PC 𝐹RR, PC PQ 

Our method 0.971 0.998 0.984 0.263 
Non-standard key-based blocking 0.990 0.987 0.988 0.036 

SortedNeighbourhood 0.939 0.990 0.964 0.005 
CanopyClustering 0.897 0.979 0.937 0.004 

MinHash-LSH 0.958 0.929 0.943 0.008 

Méta-bloquants 0.960 0.999 0.979 0.034 

 

 
Figure 4.  
Detail numerical for the DBLP-ACM. 

 
The numerical evaluation results for the Amazon-Google dataset are presented in Table 7, offering 

a comparative perspective on the performance of our method against several baseline techniques.On the 
Amazon-Google dataset, our method achieved strong results in terms of reduction rate (RR = 0.971), 
pair completeness (PC = 0.962), and F-measure (0.966), demonstrating its ability to maintain an 
effective balance between efficiency and coverage in a highly heterogeneous data context. It significantly 
outperforms the baseline methods, particularly in RR and F-measure, where approaches like Non-
Standard Blocking and MinHash-LSH show notably weaker performance. However, the pair quality 
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(PQ = 0.007) remains modest, a limitation observed across most methods on this dataset. This can be 
attributed to the high lexical and structural variability in the data, which makes precise match detection 
more difficult. Despite this, our method stands out for its overall stability and confirms its adaptability 
to complex datasets, while highlighting the potential for future improvements through the integration 
of more advanced semantic matching techniques. 
 
Table 7.  
Elaborate on the numerical results related to the Amazon-Google. 

Method RR PC 𝐹RR,PC PQ 

Our method 0.971 0.962 0.966 0.007 

Non-standard key-based blocking 0.779 0.954 0.858 0.001 
SortedNeighbourhood 0.933 0.627 0.750 0.002 

CanopyClustering 0.956 0.820 0.883 0.006 

MinHash-LSH 0.418 0.802 0.549 0.000 
Méta-bloquants 0.907 0.913 0.904 0.009 

 

 
Figure 5.  
Detail numerical for the Amazon-Google. 

 
The Clean-Synth dataset is a well-structured synthetic dataset, free from noise or significant 

variations, making it ideal for evaluating performance in a controlled deduplication setting. On this 
dataset, our method achieved near-perfect results, with a Reduction Rate (RR) of 0.999, a Pair 
Completeness (PC) of 0.998, and an F-measure of 0.998, demonstrating its ability to cover almost all 
true matches while significantly limiting the number of comparisons. Most notably, it achieved a Pair 
Quality (PQ) of 0.175, which is substantially higher than all competing methods, whose scores remain 
very low (below 0.016). This shows that our approach is able to maintain high precision, even when 
other methods achieve high completeness at the cost of many false positives. These results confirm the 
robustness and accuracy of our method in clean, well-structured synthetic environments. 
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Table 8.  
Elaborate on the numerical results related to the Clean-Synth. 

Method RR PC 𝐹RR,PC PQ 

Our method 0,999 0.998 0,998 0.175 
Non-standard key-based blocking 0.997 1.000 0.998 0.012 

SortedNeighbourhood 0.960 1.000 0.980 0.001 

CanopyClustering 0.985 1.000 0.992 0.003 
MinHash-LSH 0.991 1.000 0.996 0.005 

Méta-bloquants 0.987 1.000 0.993 0.016 

 

 
Figure 6.  
Detail numerical for the Clean-Synth. 

 
Table 9.  
Elaborate on the numerical results related to the Dirty-Synth. 

Method RR PC 𝐹RR,PC PQ 

Our method 0,999 0,997 0,997 0,881 
Non-standard key-based blocking 0.997 1.000 0.998 0.173 

SortedNeighbourhood 0.964 1.000 0.982 0.015 

CanopyClustering 0.999 1.000 1.000 0.969 
MinHash-LSH 0.967 0.999 0.983 0.016 

Méta-bloquants 0.993 0.926 0.953 0.239 
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Figure 7.  
Detail numerical for the Dirty-Synth. 

 
From a methodological perspective, the experimental results confirm the relevance and effectiveness 

of our approach, particularly its ability to maintain an optimal balance between Pair Completeness and 
Pair Quality, which are key indicators of performance in record linkage systems. However, it is 
important to note that this study focuses exclusively on quality metrics, without including an analysis of 
execution time or an assessment of computational complexity. This omission represents a significant 
limitation, especially in the context of Big Data, where computational efficiency is a critical factor for the 
practical deployment of any solution, particularly in real-time applications or when processing large-
scale datasets. 

This methodological choice is deliberate, as the primary objective of this initial study was to 
demonstrate the capacity of the proposed approach to deliver high-quality results. Nevertheless, a more 
in-depth analysis of scalability, time complexity, and resource consumption will be conducted in future 
work. This analysis will be carried out within a distributed computing environment, such as Hadoop, in 
order to leverage parallelism and evaluate the method’s performance under more realistic and large-
scale conditions. Through this perspective, we aim to confirm the operational feasibility of our approach 
while ensuring a robust trade-off between efficiency, accuracy, and scalability in complex application 
scenarios. 
 

5. Conclusion 
In this article, we have proposed a novel unsupervised record linkage approach that combines the 

Firefly Algorithm, Locality-Sensitive Hashing (LSH), and Length-based Feature Weighting (LFW) to 
optimize data quality in Big Data environments. Our experimental results demonstrate the effectiveness 
of this approach, particularly in terms of balancing Pairs Completeness (PC) and Pairs Quality (PQ), two 
critical metrics for evaluating record linkage performance. These results confirm the robustness, 
relevance, and flexibility of our method, which adapts well to different data contexts while ensuring 
high performance. However, despite the promising quality outcomes, a significant limitation of our work 
lies in the absence of execution time analysis and computational complexity assessment. In a Big Data 
context, where computational efficiency is a critical factor, it becomes essential to evaluate the 
scalability of the proposed method and its capacity to operate in distributed environments, particularly 
on platforms such as Hadoop. This evaluation will be the focus of dedicated future research. 
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In addition, several improvement paths will be explored, including the integration of machine 
learning techniques to enhance both the accuracy and efficiency of record linkage, as well as a deeper 
exploration of semantic analysis through advanced meaning-processing mechanisms to improve data 
interpretation and utilization. Furthermore, we plan to conduct an in-depth investigation of Arabic 
language processing, leveraging its morphological and syntactic specificities to refine linkage 
performance in this linguistically complex context. All these research directions are part of a broader 
effort to optimize large-scale data management, address Big Data challenges, and enhance both the 
semantic and linguistic dimensions of the record linkage process for more precise, contextualized, and 
meaningful data analysis. 
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