
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 9, No. 2, 2307-2317 
2025 
Publisher: Learning Gate 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

© 2025 by the authors; licensee Learning Gate 
History: Received: 20 December 2024; Revised: 24 January 2025; Accepted: 6 February 2025; Published: 27 February 2025 
* Correspondence:  jasmin.redzepagic@algebra.hr 

 
 
 
 
 

Vulnerabilities in cryptographic hash functions: A practical study of hash 
cracking techniques and security implications 

 
Jasmin Redžepagić1*, Damir Regvart2, Hrvoje Rudeš3, Robert Petrunić4 

1,2,3,4Department of System Engineering and Cybersecurity Algebra University, Zagreb, Croatia; jasmin.redzepagic@algebra.hr 
(J.R.) damir.regvart@algebra.hr (D.R.) hrudes@algebra.hr (H.R.) robert.petrunic@algebra.hr (R.P.). 

 

 

Abstract: This paper explores hash functions and their security challenges, which ensure data integrity 
and confidentiality in digital systems. With advancing computing power, particularly GPUs and 
distributed networks, hash functions face increasing threats from brute-force, dictionary, and rainbow 
table attacks. Tools like Hashcat, Cain & Abel, and John the Ripper were analyzed for their efficiency 
against MD5, SHA-1, and SHA-512. Results highlight vulnerabilities in standard algorithms, 
emphasizing the need for more robust hash functions, especially in high-security and resource-
constrained environments. 

Keywords: Brute-force attacks, Cybersecurity, Data integrity, Dictionary attacks, Hashes, Rainbow tables. 

 
1. Introduction  

Hash functions are an essential component of cryptographic systems, providing critical functions in 
data integrity, authentication, and error detection. With the increasing prevalence of digital data and 
online services, the security of hash functions has become paramount. Yet, hash algorithms are 
vulnerable to attacks that seek to reveal the plaintext behind a hash or exploit weaknesses in the hashing 
process. This paper examines these vulnerabilities in-depth, exploring the characteristics, weaknesses, 
and strengths of different types of hash functions through practical experiments. The primary tools 
analyzed include Hashcat, Cain and Abel, and John the Ripper, which employ various methods such as 
brute-force attacks, dictionary attacks, and rainbow tables to crack hash values. 

In conducting these experiments, we used a laptop with limited resources to provide a baseline 
understanding of each method’s computational demands. While the hardware constraints may not reflect 
high-performance environments, they illustrate the practical limitations and potential improvements 
achievable with more advanced configurations. 

This paper offers several contributions to the study of hash function security. First, it analyzes 
popular hash-cracking tools and their capabilities, focusing on speed, compatibility, and processing 
requirements. Second, it compares different hash-value attack techniques, including brute force, 
dictionary, and rainbow table attacks, to assess their effectiveness against various hash functions. Third, 
it examines hardware efficiency, illustrating the impact of CPU and GPU usage on cracking times and 
demonstrating the advantages of GPU-optimized algorithms. 

The rest of this paper is organized as follows. Section II discusses related work to hash functions, 
followed by section III, which discusses the basics. Section IV details the environment setup and data 
collection process, followed by various hash-cracking tools and their configurations. Section VI covers 
specific attack techniques, while section VII analyzes experimental results, discussing their implications 
for practical security applications. Finally, section VIII suggests areas for future research, and section IX 
concludes the paper. 
 
 

https://orcid.org/0009-0004-7184-0987
https://orcid.org/0000-0002-8832-9841
https://orcid.org/0000-0002-0486-4151


2308 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

2. Related Work 
Hash functions, as a cornerstone of cryptographic security, have evolved significantly in response to 

emerging vulnerabilities and attacks. Various research studies over recent years have focused on 
improving the robustness of hash algorithms, particularly in applications like digital forensics, password 
protection, and data integrity. For instance, Jangid and Vidushi [1] S-HASH tool emphasizes the 
ongoing threat of dictionary and brute-force attacks on widely used algorithms such as MD5 and SHA, 
highlighting their susceptibility to cracking efforts. Similarly, Kundu and Dutta [2] discuss the 
vulnerability of traditional cryptographic hash functions to a spectrum of attacks, including those 
targeting collision and preimage resistance. 

The advancements in hash function security are underscored by modifications to widely used 
algorithms, as seen in Bemida, et al. [3] enhanced SHA-512, which introduces changes to increase 
resistance against brute-force and rainbow table attacks. In another effort, Tihanyi, et al. [4] developed a 
privacy-preserving cracking protocol to allow third-party password recovery without compromising data 
confidentiality, employing methods such as predicate encryption. Furthermore, Marchetti and Bodily [5] 
illustrate the effectiveness of the John the Ripper tool in dictionary attacks, noting the tool’s limitations 
in brute-force scenarios, particularly against well-constructed password hashes. 

Research on lightweight cryptographic hash functions tailored for resource-constrained 
environments, such as IoT, addresses the need to balance performance and security. Windarta, et al. [6] 
analyze various lightweight hash functions that cater to the specific requirements of IoT devices, which 
typically cannot accommodate resource-intensive security protocols. In line with these constraints, El 
Hanouti, et al. [7] present a streamlined hash function designed for speed without severely 
compromising security, making it suitable for applications needing rapid processing and moderate 
security. 

Enhancements in algorithm architecture also focus on optimizing hash functions for specialized 
hardware, as demonstrated by Sideris, et al. [8] who propose a modified Keccak-based SHA-3 
architecture for FPGA devices, significantly boosting throughput. Similarly, Rudy and Rodwald [9] 
demonstrate that distributed cracking platforms like Hashtopolis can leverage multiple GPUs, 
optimizing performance for forensic and security applications requiring high-speed hash computations. 

The design and classification of hash functions based on anti-attack resilience reflect ongoing efforts 
to develop more secure hash mechanisms. Wang and Gu [10] introduce a classification methodology 
based on anti-attack performance, providing a framework for choosing appropriate hash functions in 
various security scenarios. The classification aims to address weaknesses in traditional algorithms, a 
theme echoed by Upadhyay, et al. [11] who emphasize the importance of the avalanche effect in hash 
security, identifying vulnerabilities in widely used algorithms through rigorous statistical testing. 

In password protection, salt hash mechanisms remain a popular countermeasure against dictionary 
attacks. Nugroho and Mantoro [12] application of salt to MD5 hashing demonstrates increased 
resilience to dictionary-based cracking attempts. Meanwhile, Nair and Song [13] present a multi-factor 
credential hashing function, which integrates multi-factor authentication for asymmetric brute-force 
resistance, a critical feature in securing high-value systems against unauthorized access. 

Multiple papers Kpieleh [14] and Anwar, et al. [15] researched the adaptation of cryptographic 
hashes for new applications, such as digital stamping and certificate verification. These papers underscore 
the role of hash functions in verifying digital signatures and authenticating certificate data. They 
advocate for improvements in the cryptographic integrity of data, especially in applications where data 
authenticity is crucial. 

Soni, et al. [16] investigation into novel hash mechanisms like NeuroHash exemplifies the quest for 
innovative solutions that resist known vulnerabilities in classical hash functions. This neuro-inspired 
approach, which utilizes XOR operations and neural network models, provides an alternative hashing 
method with potential resilience to attacks commonly affecting traditional hash functions. 
 
3. Hash Functions 

To access nearly any online service or company resource, users must have an account with a 
username and password. Based on the permissions granted to each user, they have specific rights to 



2309 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

resources and applications. To enable the system to differentiate between users, each individual is 
identified by their username, which must generally be unique, and their password. Access to the system is 
only granted when both pieces of information match the data stored within the user database and are 
correctly entered in the login form. 

Many systems have predefined formats for usernames and passwords. For example, usernames may 
not allow spaces or special symbols, while passwords must contain specific character combinations to 
ensure security. 
 
3.1. Defining Hash Functions 

Before explaining how hash functions ensure the integrity of a message or document and provide 
additional protection when storing sensitive data such as passwords, it is essential to define what a hash, 
or digital digest, is and why some authors refer to it as a “cryptographic Swiss army knife” [17]. It is also 
noted that nearly all cryptographic functions and protocols use some form of hash, whether for 
preserving integrity or as a security mechanism [17]. Generating a digest effectively produces a fixed-
size digital signature for the input data [18]. 

A hash algorithm must be collision-resistant, meaning it should not produce the same output for two 
inputs. If the algorithm is robust, each unique input sequence creates a distinct digest, ensuring that the 
digital fingerprint is unique and cannot be replicated with a different input value [18]. However, creating 
an ideal hash function is nearly impossible since the hash output is of fixed length, typically 2ᴺ, where N 
is a natural number, resulting in outputs of 16, 32, 64, or more bytes. Conversely, input values are 
unrestricted in size, inevitably leading to the possibility of two different inputs producing the same 
output. 

The integrity of information or a system is one of the three foundational principles of a secure 
information system, known as the CIA triad: confidentiality, availability, and integrity. Data integrity 
means that information remains unchanged during communication, preventing unauthorized individuals 
from altering the message and assuring the recipient that the message received is the original sent by the 
sender. Cryptographic hash functions are responsible for this task and will be analyzed further in the 
following sections. Additionally, hash functions verify the immutability of messages amidst various 
adverse events, from cyberattacks to natural disasters. In an ideal hash function, if a digest is calculated 
for a given input value, and then a single bit of that input is altered, the resulting output should be 
entirely different. Furthermore, an ideal hash function is one-way, meaning the initial input value cannot 
be determined from the output. 
 
3.2. Application of Hash Functions 

Due to their properties, hash functions are well-suited for many data protection operations. However, 
despite their abundance, they are primarily used in two main areas: data protection and error detection. 

It is important to note that different algorithms are used in these two areas. In data protection, there 
is always the assumption that a malicious attacker may attempt to reveal protected data. Therefore, hash 
algorithms designed for data protection must resist collisions and prevent reverse-engineering of the 
initial value from the digest, or more – they must be one-way functions. 

Algorithms used for error checking do not need to be collision-resistant or immune to reverse-
engineering of initial values. These algorithms detect errors during message transmission through a 
communication channel or when writing to media. The most used algorithm for error detection is CRC—
Cyclic Redundancy Check. 
There are two main categories of hash functions: 

• those that calculate the digest without a key, using only the message as an input parameter (MDC 
– Modification Detection Codes). 

• those that calculate the digest with the help of a key, using both the key and the message as input 
parameters (MAC – Message Authentication Codes). 

The purpose of MDC functions is to verify integrity in various systems. These functions have 
additional requirements they must meet. For example, the input and output data must not be correlated 
in any way; it must be tough to compute input values x_1 and x_2 that differ in a few bits (low entropy 



2310 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

content), and it must not be easy to deduce parts of the message even if other parts of the message are 
known. On the other hand, MAC functions, which use a key, have different requirements. In addition to 
computational simplicity, these functions must satisfy the condition of computational resistance. 
Computational resistance refers to the inability to find a set of input data that yields the same output 
value as a set of known input data. 

Hash functions play a crucial role in maintaining data integrity during digital forensics. All data must 
remain unaltered throughout an investigation to serve as valid evidence in court. According to Johansen 
[19] all digital forensics and evidence collection tools use hash functions. Before any action is taken on 
potential evidence, the hash value of each document is calculated and stored. At the end of the evidentiary 
process, the hash is recalculated, and if it does not match the initial value, the evidence may be dismissed 
due to possible manipulation. 

Different hash functions have varying “strengths,” which are measured by four criteria [20]: 

• Collision resistance – two input values should have no identical output value. 

• Output distribution – particularly relevant for non-cryptographic functions, where it is crucial that 
each possible output value can be generated with the same probability, regardless of any correlation 
among input values. 

• Avalanche effect – a minimal change in input should produce a significantly different output. 

• Speed – hash calculation must be performed in real-time. 
For example, Aura and Roe [21] analyzes hash functions with an output of less than 128 bits. Such 

functions are beneficial for securing communication channels, where we aim to minimize the bandwidth 
used for transmitting “non-useful” data. The study focused on CPU usage during brute-force attacks and 
the increased cost (CPU load) of hash generation and executing brute-force attacks. The principle they 
achieved this with is similar to the approach used in slow hash functions, described later in this paper, 
which is to increase the number of iterations in the hash calculation. 

Another study Tchórzewski and Jakóbik [22] theoretically analyzes the strength of selected hash 
functions approved by NIST, primarily the widely used SHA-1, SHA-2, and SHA-3 functions. The 
likelihood of specific output bit values given the input, collision resistance, and randomness in output 
calculation is evaluated through mathematical analysis and three different tests. Given its longer output 
length and higher computational requirements, the SHA3-512 function performed best, as expected. 
 
4. Methodology and Data Collection 

The paper's data collection methodology aimed to assess the vulnerabilities of commonly utilized 
hash functions under regulated conditions. The researchers created a dataset of hash values employing 
prevalent cryptographic algorithms, including MD5, SHA-1, and SHA-512. The hash values were 
generated from plaintext inputs, such as basic passwords and strings, facilitating the assessment of the 
efficacy of attack techniques in retrieving the original data. The study utilized a recognized plaintext-to-
hash correlation to guarantee consistency and reliability in assessing different attack methodologies. 

The experiments were performed in a standardized testing environment utilizing a consumer-grade 
laptop. The configuration comprised an Intel Core i5 2450M processor, 6GB of DDR3 RAM, and an ATI 
Radeon HD7650M graphics card. Despite its modest specifications, this hardware established a baseline 
for evaluating various hash-cracking tools' computational requirements and efficacy. The tools being 
assessed comprised well-known applications like Hashcat, John the Ripper, and Cain & Abel, which were 
set up to utilize CPU and GPU resources when feasible. 

The study generated hash values and simulated real-world conditions by examining various attack 
scenarios, such as brute-force attacks, dictionary attacks, and rainbow table lookups. Each assault was 
designed with parameters, including utilizing GPU acceleration and incorporating custom dictionaries. 
These configurations enabled the researchers to thoroughly investigate the performance and limitations 
of each method, facilitating a comprehensive analysis of hash function vulnerabilities.  
 
 
 
 



2311 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

5. Types of Hash Functions 
Hash functions come in different types, each designed to address specific security needs and 

computational requirements. This section explores fast and slow hash functions, analyzing their 
strengths, vulnerabilities, and ideal use cases. 

5.1. Fast Hash Functions 
Certain hash functions achieved significantly faster hash space search results than others on the 

laptop used for these experiments. 
The sample processing speed for NTLM on this setup is 1590 MH/s, or 1590 mega hashes per 

second, where “mega” represents 106106, or one million. This means the computer used in the project, 
with the help of graphics processors, can analyze 1.59 billion samples per second, even on a laptop over 
ten years old. We can only imagine the performance of a system with 16,384 CUDA processors. 

Throughout history, numerous hash algorithms have been developed, and some make us question 
how they were ever approved for use. The LM algorithm, for instance, is outdated and no longer in use. 
It was popular during the era of Windows XP OS and is specific in that it limits the input parameter to a 
length of 14 characters, which is split into two inputs of up to 7 characters each. This design flaw makes 
it highly vulnerable because cracking the hash doesn’t require finding a unique 14-character value but 
rather two 7-character values, significantly speeding up the process. Another major flaw of this algorithm 
is its case insensitivity; for instance, the hashes for “Test” and “TEST” are identical, which reduces the 
number of combinations to be examined. 

MD5, or Message-Digest Algorithm 5, is arguably the most well-known and widely used hash 
algorithm. It computes a 128-bit digest and is mainly used for file integrity verification. Designed by 
Ronald Rivest, also the creator of the highly secure AES algorithm, MD5 vulnerabilities were discovered 
as early as 1996. Yet, the algorithm is still used primarily for verifying data integrity. Using the Hashcat 
tool, the search speed for MD5 hash space remains relatively high, around 500 MH/s, or half a billion 
samples per second. 

SHA1, or Secure Hash Algorithm 1, is also frequently used, though no longer considered secure 
enough for storing user data in databases. SHA1 accepts an input of up to 264 bits and outputs a 160-bit 
digest. Despite being broken, SHA1 is still deemed relatively secure, as it requires advanced analytical 
techniques inaccessible to typical internet users. The Hashcat performance for SHA1 in comparable 
settings on the laptop was about 280 MH/s or 280 million samples per second. 
 
5.2. Slow Hash Functions 

The SHA-512 function generates a 128-character hexadecimal digest. The first 256 bits represent the 
message, while the other 256 bits serve as a security addition (salt) to prevent collisions and improve 
function security. The search speed for this hash function was only 11 million samples per second, 
balancing speed and security. 

One might wonder why SHA1, a relatively insecure algorithm, is still widely used despite the 
existence of the NIST-approved SHA-512, which offers a higher level of security. The answer lies 
primarily in execution speed. Although not a scholarly source, the example on Stack Overflow [23] is 
illustrative and informative. One user explained why SHA-512 is not universally used in place of SHA1, 
using the example of establishing a secure VPN connection. It is estimated that if we want to hash all 
transmitted data on a typical consumer modem with a single 200 MHz CPU core, the data transmission 
speed would be 6 Mb/s with SHA1. However, using SHA-512 instead would reduce the speed to 1.5 
Mb/s. 

Another algorithm that is gaining popularity is scrypt. Scrypt became widely known with the rise of 
cryptocurrencies, as Bitcoin uses SHA-256, while Litecoin uses scrypt. Scrypt is intentionally slower than 
SHA-256 to enhance security and resistance against brute-force attacks. Scrypt performs many iterations 
during computation, meaning the processor must compute the hash a specified number of times. Each 
time it calculates the digest, it becomes the new input value, repeating the process as often as configured. 
Scrypt’s variable iteration count further complicates hash cracking. In addition to requiring substantial 
processing time, the script also demands considerable memory. A similar function is bcrypt, which is also 
classified as a slow hash function. 



2312 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

6. Tools for Cracking Hash Values 
Numerous publicly available tools exist for cracking hash values. Most can be run on any operating 

system and often differ in execution speed—some support parallel processing across multiple CPU cores, 
while others utilize GPU processing. Below is an overview of the most popular tools, all free to download 
and use. 
 
6.1. Hashcat 

One of the most well-known tools for password cracking and discovering initial hash values is 
Hashcat. It is a free, open-source program, meaning anyone can download and modify it according to 
their needs and preferences. The official website describes it as the world’s fastest tool, supporting over 
160 hash functions with various configurations. It is available on all operating systems and compatible 
with a wide range of hardware components on the market. Additionally, Hashcat supports cracking 
multiple hashes simultaneously, parallel processing across various devices, and even distributed 
processing over a network. 

A key advantage of Hashcat is that it supports CPU (central processing unit) and GPU (graphics 
processing unit) operations. While the CPU can process specific data types much faster, typical consumer 
CPUs have between 4-8 cores (whether physical or virtual, generated through Intel's hyper-threading 
technology). High-performance server processors, such as the Intel Xeon Gold series, can have 36 
physical or 72 virtual cores [24] and even more in the AMD Ryzen Threadripper series [25]. On the 
other hand, GPUs have a vastly more significant number of cores. For example, the latest-generation 
Nvidia RTX 4090 GPU boasts 16,384 CUDA cores [26] which enable parallel processing for specific 
tasks, such as hash cracking. Although these GPU cores do not have the same capabilities as CPU cores, 
GPUs are colloquially referred to as rudimentary because they work with a limited instruction set. 
However, they are particularly effective at cracking hash algorithms. 

Suppose we can harness the potential of all GPU cores, which are often underutilized unless a game or 
graphics-intensive task is running (as modern CPUs usually have built-in graphics). In that case, we can 
speed up the hash cracking process hundreds of times over, using a single GPU that is far more cost- and 
energy-efficient than a CPU with a large number of cores. 

In addition to GPU power, Hashcat can employ advanced mathematical models, such as Markov 
chains. A Markov chain is a mathematical model that moves from one state to another according to 
specific probability rules. Its key feature is that the set of possible future states remains the same 
regardless of the path to reach the current state. In other words, the likelihood of moving to any given 
state depends only on the current state and the time elapsed [27]. This system utilizes information 
theory or the statistical probability that a particular character in a text/password follows another specific 
character. This significantly narrows down the list of possible passwords, speeding up the discovery 
process. However, while it accelerates the search, it can also hinder it. 

In Fig. 1, ten NTLM hashes were loaded into the application and attacked. For speed, each hash in 
plaintext contained 4-6 characters, including uppercase and lowercase letters, numbers, and special 
symbols. The search concluded exceptionally quickly using the GPU, but despite the high speed, the 
Markov chain search failed to find any initial values. In lay terms, it was a statistical error. 

The second scenario, as shown in Fig. 2 I repeated the same test setup and sample but with Markov 
chains disabled.  

GPUs were again used, but the search took over 10 minutes. Although more time-consuming, this 
method successfully revealed all initial hash values. 
 
6.2. Cain and Abel 

Another top-rated, older-generation tool is Cain and Abel. Initially developed for Windows XP, this 
tool offers a range of functions beyond password cracking. It combines several basic features of the 
Wireshark program. In addition to capturing and decoding packets, Cain and Abel can analyze Wi-Fi 
signal quality, assess network security levels, and perform traceroutes to a server. The downside of this 
tool is that it only supports CPU processing, which significantly slows down its performance. 

 



2313 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

In Fig. 1, the cracking of a single NTLM hash composed of 4-6 characters is shown. The method 
used for the attack is brute force, meaning it tests every possible combination within the 4–6-character 
range. The computer utilized only a dual-core CPU, using 50% of its total processing power. The 
estimated time to crack a single hash was 7 hours. 
 

 
Figure 1.  
Cracking passwords using Markov chains. 

 

 
Figure 2.  
Cracking passwords without using Markov chains. 

 
In comparison, Hashcat, using a GPU, completed the same task in just over 10 minutes and 

successfully cracked ten different hashes. 

6.3. John the Ripper 
John the Ripper, or JtR for short, is another popular tool for cracking hash values. Like Hashcat, JtR 

can be used on all operating systems and run via the command line or a graphical interface. JtR supports 
GPU processing but is explicitly optimized for Nvidia CUDA technology. The program supports many 
different hash algorithms and is known for its speed and reliability. Like Hashcat, JtR allows multiple 
hashes to be loaded and cracked simultaneously. 
 
7. Techniques for Cracking Hash Values 

Multiple approaches are possible when attacking any system. Some are more effective but costly, 
while others are cheaper (in terms of cost-benefit analysis) but yield poorer results. It is important to note 
that the goal of any attack remains the same: in this case, finding the plaintext value for a given hash. 
 
 
 



2314 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

7.1. Brute Force Attacks 
Brute force attacks are the oldest and simplest form of attack. They are easy to implement and 

guarantee accurate results, though execution time can be a concern. Brute force attacks, also called 
exhaustive searches, systematically test all possible combinations [28]. A traditional brute force attack 
tests every possible combination. For example, if we have a password that we know is composed only of 
lowercase English letters and has eight characters, there are precisely 26^8 possible combinations, and 
the task of a brute force attack is to test them all. There are several improved versions of this approach. 
One way is to use Markov chains as a statistical model, or backtracking, which employs logic to reduce 
the number of possible combinations. Execution time can also be shortened if characters are chosen 
randomly rather than sequentially. If all potential characters are selected sequentially, a password in the 
form “bcdef” is significantly weaker than one in the form “zzzzz,” even though the first has higher 
entropy with the same number of characters. With random selection, statistically, the password is likely 
to be discovered after testing just over half of all possible values, assuming the hash algorithm used is 
known. 
 
7.2. Dictionary Attacks 

Another popular attack type is the dictionary attack. As the name intuitively suggests, a dictionary is 
a predefined set of meaningful words. This attack type is a subset of brute force attacks, which involves 
testing many combinations. However, the number of combinations tested in this attack is far smaller, as 
only sensible, meaningful word combinations are considered. The assumption is that users choose logical 
letter sequences for easier recall. According to one source, the most common passwords are meaningful 
words like “password,” “let me in,” or “star wars”. Numerous dictionaries containing the most common 
passwords and their variations are available online. To guess such words through a brute-force attack 
would require many combinations. Yet, experience shows that most users do not use random character 
combinations, opting for meaningful strings, making it logical to focus on sensible character sequences. 

Despite being faster at finding passwords, dictionaries have a significant limitation: a word 
meaningful in one language may not exist in another. Additionally, the character set for one language’s 
alphabet may differ significantly from another’s. For example, Croatian contains diacritical marks. If a 
downloaded dictionary is used to try and crack the password “ćiro,” there is a high chance it will remain 
uncracked in most dictionaries due to the letter “ć.” Similarly, imagine an attack on a password 
containing German characters such as “ß,” “ü,” or “ë,” using an English dictionary. Alongside the need for 
appropriate dictionary localization and its suitability for attacks, disk space usage is another factor to 
consider. For practical use, the dictionary should ideally be stored locally. While exceptions exist, such as 
attacks where words are downloaded from the internet and immediately used, then deleted from 
temporary files, dictionaries can occupy tens to hundreds of gigabytes. This may not seem excessive, but 
it’s important to remember that these dictionaries only contain the most common words of a particular 
language or region. 
 
7.3. Rainbow Tables 

Rainbow tables represent a combination of brute force and dictionary attacks. This concept is best 
explained using the theory of databases. In databases, one primary key is usually unique for each table 
row and serves as a unique identifier. Similarly, in rainbow tables, each hash is unique for each row, with 
a corresponding plaintext value. This attack is by far the fastest. In previous attacks, the computer had to 
fetch a value, calculate its hash, and compare it with the target values. This step is unnecessary with this 
attack type, as the hash is precomputed for all table entries. The computer retrieves the precomputed 
hash and compares it to the target hash. If they match, it only needs to recover the plaintext version from 
the adjacent column. 
Figure 3 Shows an attack on an NTLM hash using the Ophcrack tool, which leverages rainbow tables. 

 
 



2315 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 3. 
Rainbow tables in Ophcrack. 

 
Although the password was relatively simple, the tables quickly found the corresponding value. 

However, this technique has its drawbacks, similar to dictionary attacks. Rainbow tables require 
significant storage space, and data retrieval from a hard drive creates a bottleneck that drastically slows 
down the process. 
 
8. Future Research 

Future research in hash functions should focus on developing new algorithms that address the 
vulnerabilities identified in current cryptographic functions. As advancements in computing power make 
brute-force and dictionary attacks increasingly feasible, especially with GPU and distributed computing 
systems, exploring hash functions with higher resistance to these attacks is essential. Additionally, there 
is a need for lightweight cryptographic hash functions that are optimized for resource-constrained 
devices such as those in IoT environments, which have limited processing power yet require robust 
security mechanisms. Enhancing the efficiency and scalability of privacy-preserving cracking protocols 
could also be a valuable study area, especially for third-party services applications. Research may further 
investigate integrating neural network models into hash functions, potentially leveraging machine 
learning for adaptive security responses to evolving attack patterns. Lastly, novel approaches to multi-
factor credential hashing functions that balance security and latency requirements could strengthen 
authentication mechanisms without significantly impacting user experience. 
 
 
 



2316 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

9. Conclusion 
This paper's findings highlight the vulnerabilities in commonly utilized hash functions when 

subjected to contemporary attack methods, including brute-force, dictionary, and rainbow table attacks. 
Using tools like Hashcat, John the Ripper, and Cain & Abel, our assessment revealed substantial 
vulnerabilities in hash algorithms, including MD5 and SHA-1. While historically significant, these 
algorithms exhibit vulnerabilities owing to their comparatively low computational complexity, rendering 
them susceptible to attacks utilizing modern hardware capabilities. Conversely, although SHA-512 
demonstrated superior resistance, it compromised processing speed, highlighting the trade-off between 
security and efficiency. 

The study demonstrated that advancements in GPU and distributed network computing 
significantly improve the efficiency of hash-cracking techniques in a resource-constrained environment. 
Our findings indicate that tools utilizing GPU acceleration substantially surpass those limited to CPU 
operations, demonstrating the influence of hardware optimization on the efficacy of these attacks. 
Furthermore, examining rainbow tables demonstrated their effectiveness in expedited hash recovery, 
although this comes with significant storage demands. 

These findings have significant ramifications for both scholarly and practical applications. They 
emphasize the necessity of transitioning from obsolete hash functions to more secure alternatives, such as 
SHA-3 or slower hash functions like bcrypt and scrypt, particularly in high-security environments. The 
study underscores the importance of incorporating advanced cryptographic methods like salt and multi-
factor authentication to reduce risks linked to predictable or brute-force attack scenarios. 

This study enhances the discourse on cryptographic security by elucidating the performance 
attributes of diverse attack methodologies and emphasizing the imperative for ongoing advancement in 
hash function design. Future research should investigate the creation of hash algorithms that optimize 
computational efficiency while improving resistance to both conventional and novel attack vectors. Such 
endeavors are crucial to protect the integrity and confidentiality of digital systems from the relentless 
advancement of computational power. 
 

Transparency:  
The authors confirm that the manuscript is an honest, accurate,  and  transparent  account  of  the  
study; that  no  vital  features  of  the  study  have  been  omitted;  and  that  any  discrepancies  from  
the  study  as planned have been explained. This study followed all ethical practices during writing. 
 
Copyright: 

© 2025 by the authors. This open-access article is distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
 
References 
[1] K. Jangid and Vidushi, "S-HASH: A crack towards cryptographic hash functions," CSVTU Research Journal on 

Engineering and Technology, 2021.  https://doi.org/10.30732/csvturj.20211001005 
[2] R. Kundu and A. Dutta, "Cryptographic Hash functions and attacks-a detailed study," International Journal of 

Advanced Research in Computer Science, vol. 11, no. 2, pp. 37-44, 2020.  https://doi.org/10.26483/ijarcs.v11i2.6508 
[3] P. J. F. Bemida, A. M. Sison, and R. P. Medina, "Modified SHA-512 algorithm for secured password hashing," 

presented at the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 2021. 
[4] N. Tihanyi, T. Bisztray, B. Borsos, and S. Raveau, "Privacy-preserving password crackin: How a third party can crack 

our password Hash without learning the Hash value or the cleartext," IEEE Transactions on Information Forensics and 
Security, vol. 19, pp. 2981-2996, 2024.  https://doi.org/10.48550/arXiv.2306.08740 

[5] K. Marchetti and P. Bodily, "John the Ripper: An examination and analysis of the popular hash cracking algorithm," 
presented at the 2022 Intermountain Engineering, Technology and Computing (IETC), 2022. 

[6] S. Windarta, S. Suryadi, K. Ramli, B. Pranggono, and T. S. Gunawan, "Lightweight cryptographic hash functions: 
Design trends, comparative study, and future directions," Ieee Access, vol. 10, pp. 82272-82294, 2022.  
https://doi.org/10.1109/ACCESS.2022.3195572 

[7] I. El Hanouti, H. El Fadili, S. Hraoui, and A. Jarjar, "A lightweight hash function for cryptographic and pseudo-
cryptographic applications," in WITS 2020: Proceedings of the 6th International Conference on Wireless Technologies, 
Embedded, and Intelligent Systems, Springer Singapore, 2022, pp. 495-505.  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.30732/csvturj.20211001005
https://doi.org/10.26483/ijarcs.v11i2.6508
https://doi.org/10.48550/arXiv.2306.08740
https://doi.org/10.1109/ACCESS.2022.3195572


2317 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 2307-2317, 2025 
DOI: 10.55214/25768484.v9i2.5072 
© 2025 by the authors; licensee Learning Gate 

 

[8] A. Sideris, T. Sanida, and M. Dasygenis, "A novel hardware architecture for enhancing the keccak hash function in 
fpga devices," Information, vol. 14, no. 9, p. 475, 2023.  https://doi.org/10.3390/info14090475 

[9] J. Rudy and P. Rodwald, "Job scheduling with machine speeds for password cracking using hashtopolis," presented at 
the International Conference on Dependability and Complex Systems, Cham: Springer International Publishing, 
2020. 

[10] Y. Wang and N. Gu, "Classification of hash functions based on anti-attack ability," presented at the 2023 
International Conference on Networking and Network Applications (NaNA), 2023. 

[11] D. Upadhyay, N. Gaikwad, M. Zaman, and S. Sampalli, "Investigating the avalanche effect of various 
cryptographically secure hash functions and hash-based applications," IEEE Access, vol. 10, pp. 112472-112486, 2022.  
https://doi.org/10.1109/ACCESS.2022.3215778 

[12] A. Nugroho and T. Mantoro, "Salt hash password using MD5 combination for dictionary attack protection," 2023 6th 
International Conference of Computer and Informatics Engineering (IC2IE), pp. 292-296, 2023.  
https://doi.org/10.1109/IC2IE60547.2023.10331606 

[13] V. Nair and D. Song, "Multi-factor credential hashing for asymmetric brute-force attack resistance," presented at the 
2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), 2023. 

[14] F. Kpieleh, "Cryptographic hash functions for digital stamping," Advances in Multidisciplinary and Scientific Research 
Journal Publication, 2022.  https://doi.org/10.22624/aims/digital/v10n4p9 

[15] M. R. Anwar, D. Apriani, and I. R. Adianita, "Hash algorithm in verification of certificate data integrity and security," 
Aptisi Transactions on Technopreneurship, vol. 3, no. 2, pp. 181-188, 2021.  https://doi.org/10.34306/att.v3i2.212 

[16] V. Soni, D. P. Bhatt, and N. Yadav, "An efficient approach of NeuroHash and its comparison with cryptographic 
hash," presented at the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization, 
2020. 

[17] A. Mittelbach and M. Fischlin, The theory of hash functions and Random oracles. Springer. https://doi.org/10.1007/978-
3-030-63287-8, 2021. 

[18] Algorithms for Calculating the Summary, "CCERT-PUBDOC-2006-08-166," Retrieved: https://www.cert.hr/wp-
content/uploads/2006/08/CCERT-PUBDOC-2006-08-166.pdf. [Accessed Nov. 3, 2024], 2024. 

[19] G. Johansen, Digital forensics and incident response. United Kingdom: Packt Publishing Ltd, 2017. 

[20] C. Estébanez, Y. Saez, G. Recio, and P. Isasi, "Performance of the most common non‐cryptographic hash functions," 
Software: Practice and Experience, vol. 44, no. 6, pp. 681-698, 2014.  https://doi.org/10.1002/spe.2179 

[21] T. Aura and M. Roe, "Strengthening short hash values," Retrieved: 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=47d90a3ceffe2b6d353201e29b6ee8f442c2dc52. 
[Accessed Nov. 3, 2024], 2024. 

[22] J. Tchórzewski and A. Jakóbik, "Theoretical and experimental analysis of cryptographic hash functions," Journal of 
Telecommunications and Information Technology, no. 1, pp. 125-133, 2019.  https://doi.org/10.26636/jtit.2019.128018 

[23] Why use SHA1, "Why use SHA1 for hashing secrets when SHA-512 is more secure," Stack Overflow," Retrieved: 
https://stackoverflow.com/questions/2640566/why-use-sha1-for-hashing-secrets-when-sha-512-is-more-secure, 
2010. 

[24] Intel Xeon Gold, "Intel Xeon gold," Retrieved: 
https://www.intel.com/content/www/us/en/products/sku/237263/intel-xeon-gold-6554s-processor-180m-cache-
2-20-ghz/specifications.html. [Accessed Nov. 3, 2024], 2024. 

[25] AMD Ryzen Threadripper, "AMD Ryzen Threadripper," Retrieved: 
https://www.amd.com/en/products/processors/workstations/ryzen-threadripper.html#specs. [Accessed Nov. 3, 
2024], 2024. 

[26] Nvidia RTX4090, "Nvidia RTX4090," Retrieved: https://www.nvidia.com/en-eu/geforce/graphics-cards/40-
series/rtx-4090/. [Accessed Nov. 3, 2024], 2024. 

[27] M. Predovan, "Markov chains," Final Thesis, University of Rijeka, Faculty of Engineering, 2024.  
[28] Brute Force Napadi, "CCERT-PUBDOC-2007-08-201," Retrieved: https://www.cert.hr/wp-

content/uploads/2019/04/CCERT-PUBDOC-2007-08-201.pdf. [Accessed Nov. 3, 2024], 2024. 

 

https://doi.org/10.3390/info14090475
https://doi.org/10.1109/ACCESS.2022.3215778
https://doi.org/10.1109/IC2IE60547.2023.10331606
https://doi.org/10.22624/aims/digital/v10n4p9
https://doi.org/10.34306/att.v3i2.212
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/978-3-030-63287-8
https://www.cert.hr/wp-content/uploads/2006/08/CCERT-PUBDOC-2006-08-166.pdf
https://www.cert.hr/wp-content/uploads/2006/08/CCERT-PUBDOC-2006-08-166.pdf
https://doi.org/10.1002/spe.2179
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=47d90a3ceffe2b6d353201e29b6ee8f442c2dc52
https://doi.org/10.26636/jtit.2019.128018
https://stackoverflow.com/questions/2640566/why-use-sha1-for-hashing-secrets-when-sha-512-is-more-secure
https://www.intel.com/content/www/us/en/products/sku/237263/intel-xeon-gold-6554s-processor-180m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/237263/intel-xeon-gold-6554s-processor-180m-cache-2-20-ghz/specifications.html
https://www.amd.com/en/products/processors/workstations/ryzen-threadripper.html#specs
https://www.nvidia.com/en-eu/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-eu/geforce/graphics-cards/40-series/rtx-4090/
https://www.cert.hr/wp-content/uploads/2019/04/CCERT-PUBDOC-2007-08-201.pdf
https://www.cert.hr/wp-content/uploads/2019/04/CCERT-PUBDOC-2007-08-201.pdf

